Data science in cell imaging
cture 2: Single cell phenotypic profiling
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All slides are open under the cc-by
license

You are free to share and adapt any
content from this presentation provided
that you attribute the work to its author
and respect the rights and licenses
assoclated with its components

PPTX slides available here
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https://drive.google.com/file/d/1gTfrKsyWBb62r5UaEpOXzsqWYkeLo3WL/view?usp=sharing

Thank you and caveat toward today's
lecture

Most of today’s slides were adapted from
Anne Carpenter (Broad Institute)!

Heavily biased toward her lab’s work
(to be iImproved next year...)



The central dogma of molecular biology
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The central dogma of biology

Genomic conditions

v

Transcriptomic conditions

'

Proteomic conditions

'

Signaling conditions

!

Cell state and function




But in reality...
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We need functional
readouts!



Why microscopy?

The only technology that allows us to
see live cell behavior and to correlate
cell function to Iintracellular (protein

guantity and location) and extracellular
(environment) factors



Morphology Is a marker of
the cell’s functional state



Diverse cell morphologies enable
dlverse functions
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Visual appearance indicates cell
(and dlsease) state
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Why do we care about single cell
resolution?

Source: https://pt.slideshare.net/ OIAGENscience/why-scientist-analyze-single-cells



https://pt.slideshare.net/QIAGENscience/why-scientist-analyze-single-cells

Genetic heterogeneity

Shalek and Benson (2017)



Occurrences

Phenotypic heterogeneity

Phenotype
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Microscor offers single cell resolution

Microscopy:
single-cell
resolution

Anne Carpenter



Complex cell models can be quantified
by Imaging

Neurons Co-cultures Tissue

Anne Carpenter



Software (e.qg., celprofilery can quantify cells

CellProfiler” Split Correct Identify cells/

cell image analysis software colors illumination compartments

Original image

Measure everything

Counts, Shapes, Sizes, Intensities, Textures, Correlations, Relationships
k { \

Anne Carpenter



Cell based biomedical research In a
nutshell (over simplified)

chemical or + N chggge? =
gene cells (phenotype) Insight
< =
| S g :
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Visual appearance indicate cell state
and can be quantified

GFP labeled protein which undergoes a translocation from the cytoplasm to the nucleus
In response to perturbations

localization  protein levels  morphology
1 T - ==
- ... + hundreds
of other features

Anne Carpenter



Automated image analysis Is

* Objective
* Quantitative, with statistics
» Measure multiple properties at once

* Distinguishes subtle changes, even those
undetectable by eye

* Faster, less tedious

Anne Carpenter



Over automation? Advise for
sclentists who are not tool builders

 Your goal Is answering a biological question?

 Fully-automated analysis Is not always worth

the time/effort. Sometimes manual Is better!

« Quantity of data?
« Accuracy needed?

« Semi-automation can save development time,
and improve accuracy

* Application specificity: use specific application
knowledge (at the cost of reduced generalization)
« \We are not all tool builders!



Three waves of quantitative
Image analysis

Measure known Train for known Discover new
phenotypes phenotypes phenotypes

Anne Carpenter



Drug discovery (we wish!)
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Tradeoffs in cell biology (& drug discovery)
Physiological relevance vs. experimental complexity

* Physiological relevance:
* Invivo
» Resolution (spatial and temporal)
« 3D
* In context of microenvironment

* Experimental complexity:
« Technology

Complexity of experiment

Costs

Amount of data collected

Complexity of data analysis



The Moore’s law

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. inData
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.
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The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.
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Tale of two Industries

Moore’s Law Eroom’s Law

Compute gets cheaper and cheaper Discovering new medicines gets
more and more expensive
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Seqguencing costs have dramatically
declined

Cost per Genome
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Seqguencing Is uncovering the cause of
many diseases

December 2005

Genome regions associated with traits or disease through
genome-wide association studies
MacArthu et al. (2017) Anne Carpenter




Drug discovery Is time consuming

Drug Discovery and Development Timeline
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Anne Carpenter, from PhRMA/Applied Clinical Trials



LOA from Phase | (%)

Drug discovery fails most of the time

Success rate of a drug entering Phase | clinical trials
Average = 9.6% make it to market
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Discovering drugs In high throughput?

millions of + . readout =
chemicals cells (phenotype) drug!

oo’ ™ cells are
T alive!
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Discovering drugs In high throughput

( )x384=

Anne Carpenter, Image: Nalgene; video: Chemistry World



Large scale imaging experiments

Cells or organisms in multiwell plates, each well treated with a gene or chemical perturbant

Cell
measurements

automated
microscopy
(any manufacturer)

-
S
(size, shape, "
intensity, texture, -’

etc.) .’

Data exploration
& machine learning

Anne Carpenter



Case study: Tuberculosis

Remains a leading cause of mortality globally
1/3 of the world is latently infected

Estimated TB incidence rates, 2013

Estimated new TB %
o cases (all forms) per Q"
100 000 population

per year
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Anne Carpenter, from WHO report, Global Tuberculosis Control 2013




Traditional approach to discover new
antibiotics

Try to kill bacteria in individual wells of multi-well plates

Add 1M test chemicals, < 8&&’ .
each in a differentwell -~ "L,

Measure amount of bacteria
(fluorescence plate reader)
and look for wells where bacteria died

Anne Carpenter



Alternative approach to discover new
antibiotics (effective, not ideal)

Add 1,000,000 test .~ b:%P <

chemicals, O M) X
each chemicalina | R
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Search for tuberculosis treatments
that prevent infection but do NOT Kill the bacterium directly

_Without drug With drug

mouse
nuclel

Anne Carpenter, from Stanley et al. (2014)



Search for tuberculosis treatments

Put and mouse cells in individual wells of multi-well plates
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Automated image analysis pipeline

Find mouse
— .
nuclei

Find tuberculosis —, Count the number of
bacteria per nucleus

Anne Carpenter



Correct illumination

Anne Carpenter, images from Carolina Wahlby



Segment cells/nuclel

Anne Carpenter, images from Carolina Wahlby



Automated image analysis
| TeNar
nuclei %h:’ 5

v
_, Quantify the

‘g; per mouse nucleus
Ne:RE

Anne Carpenter



Search for tuberculosis treatments

_ Without drug With drug

mouse B
nuclei

 ldentified compounds that prevent bacterial
Infection/expansion but do NOT kill the bacterium directly
« Gefitinib reduces Mtb growth in the lungs of infected mice

Anne Carpenter, from Stanley et al. (2014)



Regulators of cell division

DNA

Actin

Normal: Abnormal:
one nucleus two nuclel
per cell per cell

Anne Carpenter, from Castoreno et al. (2010)



Using > 1 features can identify
Interesting cells

Anaphase/

telophase Late prophase/metaphase

Y-axis: phospho-H3 staining

X-axis: DNA content

Anne Carpenter, from Castoreno et al. (2010)



Screen everything!
(Carpenter lab)

S. aureus itosi ' ' .
ureu DNA damage Mitosi Mitochondrial E faecalis
abundance

infection

S

Ausubel/ Yaffe lab Mitchison lab Mootha lab Ausubel lab
Irazoqui labs

Anne Carpenter



Screen everything!
(Carpenter lab)

AV~ mTORpathway . . Immune _
neutralization  activation environment Malaria

o

Fenyo lab Sabatini lab Orr-Weaver  Shipp/Rodig Bhatia lab
lab labs

Anne Carpenter



Translational impact

(Carpenter lab, cellprofiler.org/impact)

Cerebral
Ebola cavernous
malformation

Tuberculosis Leukemia

Crispino lab Hung lab Gilliland/Scadden
/Golub/Schreiber labs

Texas Biomedical University of
Research Institute Utah

Leukemias &
Lymphomas

Vienna hospitals & medical
institutes, ETH Zurich

Anne Carpenter



A key step Is high throughput cell
pheontyping is nuclel segmentation

2018 Data Science Bowl: Towards a Universal Nucleus Finder

@ [ﬁ Secure | https://www.kaggle.com/c/data-science-bowl|-2018 7}} B P = Finding the nucleus helps to...

5 Y Bookmarks [ Defaults ESLit Searches [ESjLabWebsites B Our software ESjAdmin E5 Personal ¥ Google Maps [EZ ImgP Confluence ES MiscCurrent BN

locate cells in varied
conditions to enable
faster cures

Search kaggle (o} Competitions Datasets Kernels Discussion Learn - "
v

Featured Prediction Competition free biologists to focus

on solutions

2018 Data Science Bowl $100,000

: - : . . Prize M
Find the nuclei in divergent images to advance medical discovery s improve throughput for

research and insight

E’ﬁ'j;j Booz Allen Hamilton - 3,403 teams - 11 days to go (4 days to go until merger deadline)

(==} reduce time-to-market for
@ % new drugs— currently 10 years

Overview Data Kernels Discussion Leaderboard Rules Host Join Competition

Overview Edit
"" increase # of compounds
+ for experiments
Description Spot Nuclei. Speed Cures.
. -
Evaluation Imagine speeding up research for almost every disease, from lung cancer and heart disease to rare (S . e hard
; : s %o : : o —. improve health an
Prizes disorders. The 2018 Data Science Bowl offers our most ambitious mission yet: create an algorithm to ’<|?\ increase quality of life

automate nucleus detection.

Anne Carpenter, from Caicedo et al. (2019)



A key step Is high throughput cell
pheontyping is nuclel segmentation

2018 Data Science Bowl: Towards a Universal Nucleus Finder

Splitmerge Ground ©0al: improve

errors truth accuracy & At
: generalizability SCIENCE
B . 8 BOWL .
b 7 aF s .

" .. Passion. Curiosity. Purpose.

A’-
X

.. Public dataset: 37,333 outlined nuclei
LT 3,919 teams competed
65,333 submissions
Implemented web app:
www.NucleAlzer.org (Horvath)

Anne Carpenter, from Caicedo et al. (2019)



Deep learning excels at segmentation
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Anne Carpenter, from Caicedo et al. (2019)



Number of NMEs

Target-based vs. phenotypic drug
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Genotype = phenotype

Anne Carpenter



Increased Interest in high-content
screens

Number of papers in which a high-throughput, image-
based experiment was used toward a discovery
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Anne Carpenter, from Singh, Carpenter, Genovesio (2014)



Most high contact screens are not very
high In Information content...

60-80% of “high-content” studies use only 1 or 2 cellular features

HCS—title Top—tier
D2
é 75% - 26
a 50% -
s
\i 25% - ! 7 7
= 4
0%- - L

| |
1-2  3-5 6+ -2 3-5 6+
No. of features

Singh, Carpenter, Genovesio (2014)



Most high contact screens are not very
high In Information content...

No dramatic improvement in information content in HCS over the
past decade

‘c_r;

% 100% -
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N asq Search

{} N # Combined
éﬂ 50% - HCS~title
- Top-tier
z 23% - CellProfiler citers
S 0% -
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Year

Singh, Carpenter, Genovesio (2014)



The data science approach: measure
everything, ask questions later...

Morphological features

—— W - = A -
N o ¥

Cells -,

“Cytological profile”: collection of measurements

describing the appearance of a cell
Periman et al. (2004)

Anne Carpenter



Measuring everything, asking questions

later

Hundreds of features: size, shape, staining intensity, texture, etc.

* Why?

Several features may be necessary to score the phenotype
Virtual secondary screens can help characterize hits
Later re-screening for new phenotypes

The measurements required to score the phenotype of
Interest may not be known a priori

The full spectrum of cellular responses to each treatment
(even those not visible by eye) may be useful for data
mining/machine learning/clustering...systems biology

Anne Carpenter



lterative machine learning

System presents a few dozen cells to biologist for scoring

o
=3
)

System defines rule based on cytoprofile of scored cells

Anne Carpenter, from Jones et al. (2009), Dao et al. (2016)



lterative machine learning

. 108 cells
.

CellProfiler Analyst

data exploration software

Scored cells are sorted by well:
identify samples with a high proportion of positive cells

Anne Carpenter, from Jones et al. (2009), Dao et al. (2016)



Screen more complex phenotypes

Hepatocytes Glioblastoma Cell division Fat metabolism Metastasis

.' s ‘-
‘ 4
.' ‘-

Bhatia lab Sabatini/Hahn labs Eggert lab Ruvkunlgg)sRourke Lander lab

aCeIIProﬁler Analyst —  Piximi, https://github.com/piximi/application

data exploration software

Anne Carpenter


https://github.com/piximi/application

Piximi: deep learning cell classifier
(under construction)

To replace CellProfiler Analyst (Carpenter lab)
+ Advanced Cell Classifier (Horvath lab)

» | =3 7
e Phenotype classifier for images » o '-“ P T
* Web-based = w - | e -
fragmented voe ‘ v g
Create category - & ’ . ‘ { I
' =

: i -
* Collaboratively developed! o s -

B sendfeedback ‘

© Hep

> |

c 4
Zlat ]

Anne Carpenter

B oo

WWW.piXimi.app = e
(under construction)

@0

CCCCCCCCC

* Uses deep learning algorithms »
* |nteractive / intuitive user interface

* Source code: https://github.com/piximi

sssssssssss



Regulators of cell division

DNA ks
DNA '

O Interphase [ Mitosis | Monopole (abnormal)

Anne Carpenter, from Tsue et al. (2009)



Co-cultured cell systems

Two or more cell types cultured together in
order to maintain physiological conditions

Necessary Challenging
® Many primary cell types lose ® Culture conditions are difficult to
their physiological functions when optimize and less robust

grown in isolation
® Need to distinguish the cell type

12'_&& of interest from the co-cultured
—E' o -oailire cells, ideally without using
= additional cellular stains
S

[Albumin]

0 2 4 6 8 1012 14
Culturing Time (Days)

Anne Carpenter



Leukemic & hematopoetic stem cells
(HSCs/LSCs)

using mouse primary HSCs or LSCs co-cultured with stromal cells

Co-cultured LSCs LSC channel only:
and stroma live, no DNA stain

Cobblestones

Identified drugs that preferentially reduce
leukemic cell growth; lovastatin extends

2 lifespan of mice given leukemic bone marrow §
cells

Anne Carpenter



Interpretabllity

 Check what features



Visualization of high dimensional

cellular data
High dimensional cellular data
Processing pipeline

Why do we need visualization?
— Data interpretation

— Hypothesis formulation

— Communication of results

Visualization methods:

— Bar charts, scatter plots (3D)

— Heatmaps o

& MR T e i

cells




PhenoPlot

A glyph-based method: “use a collection of visual

elements such as size, colour, texture and/or orientation to
depict multi-dimensional data”

Free open source Matlab toolbox (+ GUI)
21 variables encoded Cell texture
A”OWS CUStOmlzathn Protrusion area

154

__Ruffliness

th

Nucleus texture

Cell length
Nucleus le

Neighbor fraction
v

Nuéleus width
“Cell width

Sailem et al. (2015)



PhenoPlot

Sailem et al. (2015)



Hierarchical Clustering

N ~ 156,000 cells
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Sailem et al. (2015)



Clusters Visualization

Cluster 1

MDAMB-453
Cluster 2

MDA-MB-157 MCF-12A

SUM149
Cluster 3

HCC1954
Cluster 4

MDA-MB-231

CAMA1
Cluster 5

Sailem et al. (2015)

JIMT1 MCF7 SUM159



Clusters visualization
b

Clusier 1
Clusier 2
Clusier 3
Clusier 4
Clusier 5
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Clusiers Sailem et al. (2015)



Clusters Visualization

Cluster 4 Cluster 5

Cluster 1 Cluster 2 Cluster 3

FPhenoplot

Cel texiure
Protrusion area

’f.‘ f,‘\ Rumness
; ¥ Nudeus
TIEE e
3 Nesghbour

Nugles vgn fraction
Call wicth

Cdl length
301 ot

Representative cell

Raw image

MDA-MB-231

HCC1143

AUS6E5

Easier to interpret than “representative” cell
Sailem et al. (2015)




Scatter plot is not informative
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PC2

Clusters visualization
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Visual interpretation of complex
pheontypes

View examples along a phenotypic
continuum (“Eigenworms”)

Generative modeling

Anne Carpenter, Goldsborough et al. (2017),
from Carolina Wahlby Lafarge et al. (2019)



Generative modeling

Synthetic
Images

distribution

Cell Orginizer, Murphy lab



Adversarial Autoencoders



Research project types

Data mining and integration in public

repositories
Collaborative bioimage analysis projects
Tool building projects



Open resources for your research
projects

Image data resource (IDR), Williams et al. (2017),
Image Data Resource: a bioimage data integration
and publication platform
https://iIdr.openmicroscopy.org/

The Allen Institute of Cell Science

The Human Protein Atlas

Branda Andrews datasets
http://sites.utoronto.ca/andrewslab/data.shtml



https://idr.openmicroscopy.org/
http://sites.utoronto.ca/andrewslab/data.shtml

Open resources for your research
projects

Bray et al. (2017), A dataset of images and
morphological profiles of 30 000 small-molecule
treatments using the Cell Painting assay. Data,
https://github.com/gigascience/paper-bray2017/
Pascual-Vargas et al. (2017), RNAI screens for Rho
GTPase regulators of cell shape and YAP/TAZ
ocalisation In triple negative breast cancer Data via
DR

Pizzagalli et al (2018), Leukocyte Tracking
Database, a collection of immmune cell tracks from
Intravital 2-photon microscopy videos (via figshare)



https://github.com/gigascience/paper-bray2017

