Data science in cell imaging
Lecture 7: deep learning in microscopy
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“The Great Wave off Kanagawa”, by Hokusai, ~1830 (Sourcéz Wikipedia)
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https://drive.google.com/file/d/1bGYT_SbAUZXygf8msUqU88bVIewoaG_k/view?usp=sharing

Last week

* Generative models for cell structure with deep
learning
 Classifying cell state with deep learning



Look at a cell and know what it is doing

What it did
What it will do

Structure «— Function

Slide adapted from Susanne Rafelski, Allen Institute of Cell Science



Label-free images contain information on
the molecular organization of the cell!

Predictive

ﬁ
models

Bright field

Ounkomol et al. (2018)
Christiansen et al. (2018)



Unstructured-to-structured information
with supervised models

Single model schematic overview

Prediction

__ Bright-field image
> Input

Model “DNA” =2 o

Minimize
A mean _sgu_aieg error__ __

Fluorescence

Repeat for
other structures

Ounkomol et al. (2018)



Combining multiple models

Prediction
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Ounkomol et al. (2018)



Mitosis time-lapse output
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Predicting cell cycle / disease
progression stage ("pseudo time”)
with deep learning

Global average Ao
pooling aama,  Visualization

CNN feed forward

Detector

Light sources (brigield)

<) o
Classification
Bnghlfleld Darkfield \ Metaphase
image (4 image Anaphase

Feature extraction -~ \\ Telophase
Softmax X gy '

Eulenberg (2017)



Today

* Guest lecture: Tammy Riklin Raviv, EE, BGU
on computer vision in microscopy

* Interpretable deep learning of label-free live
cell images uncovers functional hallmarks of
highly-metastatic melanoma



Guest lecture
Tammy Riklin-Raviv, EE, BGU
Computer vision In microscopy
(slides not available for public use ®)
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Interpretable machine learning of

“label-free live'cell images “ *
«uneovers funetional hallmarks of
Qighly-metastaﬁtic melgnooma
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Zaritsky, Jamieson, Welf, Nevarez, et al. (2020)



Can we predict cancer cell
functional states from live
label-free cell Images?



Melanoma as model

Genetic heterogeneity = functional readout to
discriminate cell type

Genes

AN

Signal transduction pathways

2

Cell appearance<—> Cell state
and dynamics




Low versus high metastatic efficiency
INn patient-derived melanoma

Correlate outcome

Stage IIIMeIanoma Xenotransplantatlon Metastatlc
Biopsy IN NSG mice efficienty

Morrison lab, UTSW
Quintana et al. (2012)



Genomics falled to predict melanoma
metastasis efficiency

Oncogenic None-oncogenic
mutation mutation
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Extracellular acidification

Standard cell biology assays failed to
classify melanoma metastasis
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The central dogma of biology

Genomic conditions

v

Transcriptomic conditions

'

Proteomic conditions

'

Signaling conditions

!

Cell state and function




But in reality...

Genomic conditions

v

Transcriptomic conditions

Proteomic conditions

!

Signaling conditions

!

Cell state and function




But in reality...

Genomic conditions

v

Transcriptomic conditions

Proteomic conditions

Enionment 3]

Signaling conditions

!

Cell state and function




We need functional
readouts to stratify
melanomal



Experimental settings

Requirement Implementation
Melanoma cells Six cell lines, nine stage Il
patient-derived tumors
Minimal cell Label-free

Intervention

Physiologically relevant Cells on top of collagen
microenvironment

Cell dynamics Live cell imaging

Sufficient N High-content imaging
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Live cell histology: label-free live
iImaging of individual melanoma cells

* 100:00 HH:MM 00:00 HH:MM
00:00 HH:MM 00:00 HH:MM




Image analysis pipeline




Adversarial autoencoder for
unsupervised feature extraction

Input Image

Draw samples
fromp(z)

=

Adversarial cost for

_’|:|+[ distinguishing p(z) from q(z)
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Reconstructed Image

‘ Feature extraction ’ ‘ Image reconstructlon,

Encoder

Decoder



Training to reconstruct a melanoma cell

Input

Reconstructed

Input

Reconstructed




Using adversarial autoencoders for
unsupervised feature extraction
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Latent cell
descriptor
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The adversarial autoencoder latent
vector Is a guantitative measure for
cell appearance

Mean square reconstruction error SMSEz

_> Encoder wep| 2 o otor| ™ feAaItttfrres w=d> | Decoder | mupp /}

descriptor




Deviation from encoding associates to
deviation from reconstructed image

0.03

Reconstruction error (MSE)

Noise added to image encoding (std)



Cell "morphing": gradually transforming
one cell to another
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Deviation from raw image (MSE)
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Cells are more self-similar over time than
two neighboring cells at the same time
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Batch effects (inter-day variability)
mask the functional cell state



Assessing day-to-day variability In
feature representations
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Intra-PDX/Inter-day distance (x-axis)
versus intra-day/inter-PDX distance
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Distance between different cell
types imaged at the same day
6

5

Distance between the same cell
type imaged at different days



tSNE 1

Latent space cell descriptors are significantly
distorted by batch effects or lack information on
distinct functional states between PDXs
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Supervised machine learning for
classification

Day 1o ; Cell type 10X
Day 2x; Cell type 20X

Unsupervised Supervised
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Supervised machine learning for
classification

(careful statistical assessment to avoid over-fitting!)

0 © shape - cell type
A Y color - label

Training set Test set
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Careful statistical assessment to
avold over-fitting (day + cell type)!

Day 1 Day 2 Day 3 Day 4
o000
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© 35 8836

Different cell types, !
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Discrimination of different melanoma cell types
(classifier blind to the cell system)

Cell type AUC Population
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Focus on cell lines versus PDXs...

Classifier blind to the cell system

!

Classification
0_.5

Classification

0

Cell lines PDXs Cell lines PDXs



Alternative descriptors - shape: single
cell segmentation In phase-contrast
Images by LEVER

Successful




Alternative descriptors
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Accuracy
0 025 05 0.75

Classification comparison using cell
shape and temporal information to
distinguish cell lines from PDXs

1

Shape Shape Shape Autoenc. Autoenc. Autoenc.
static time avg. BOW static time avg. BOW



Mean squared displacement analysis of
single cell trajectories

10

Cell lines = =

Time lag (minutes)



Live cell histology for classification of
melanoma metastatic efficiency

Classifier blind to the patient

Low High Low High
efficiency efficiency efficiency efficiency
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Shape and motility can not distinguish

metastatic efficiencyv
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Classifier confidence in
high metastatis efficiency

0.5

Cell plasticity

@ High efficiency
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The dream: live cell histology (LCH)
of fresh biopsies to predict
metastatic potential

B|0psy Transplant culture Image LCH Correlate
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What are the physical attributes
that discriminate high from low
metastatic efficient cells?

Confidence score



Using the variability within the data to
identify key features for the classification
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Correlating all features and classifier
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Feature #56 Is negatively correlated with
the classifiers’ predictions!

i High
- Low

0.03

Confidence score
Frequency

Feature 56 -3 0 3
Feature 56

[ —




Second try: what physical properties
are encoded by feature #567?

Feature #56







cglebrity ces

Source: http://picchore.com/animated-qif-2/rather-mesmerizing-face-morphing-qif-of-

assorted-celebrities/



http://picchore.com/animated-gif-2/rather-mesmerizing-face-morphing-gif-of-assorted-celebrities/

Transforming cells “In silico”
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Shifts in feature #56 negatively correlated
with variation In the classifier scores
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Morphing melanoma in silico
Low > High High 2 Low




What can we see?

AFeature #56 (z-score)
-3 -2 -1 0 1 2 3

Diff+ Recon.

<’ .
|!I II Classifier score

Feature #56



Raw images

Reconstructed

Is It replicated?

AFeature #56 (z-score)

Diff+

AFeature #56 (z-score)
-2 -1 0 1
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Reconstructions Diff+ Classifier score

10

20

Feature #

IS It specific?

30

40
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-3 -2 o 1 2 33 210 1 2 3 3 -2 10 1 2 3
AFeature #56 (z-score) AFeature #56 (z-score) AFeature #56 (z-score)



Hypothesis: feature #56 Is associated
with a combination of
enhanced protrusive activity, and
Increased light scattering



Just one feature? We were lucky!

Multiple features are classification-driving for discriminating cell

lines from PDXs
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Validation with live cell imaging!



Cell transitioning “in the wild”
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Temporal fluctuations Iin feature #56
negatively correlated with the temporal
fluctuations In the classifier scores
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Spontaneously transitioning from a
predicted low to high met. efficiency

Time (minutes)
0 5 10

Diff+ Raw




Cell transitioning “in the wild”
Low = High

70



Hypothesis: feature #56 Is assoclated
with a combination of
enhanced protrusive activity and

Increased light scattering

Increased light scattering must be caused by
alteration in the refractive index: fluctuations in
organelle/cytoplasm composition? cell stiffness?



~Harnessing generative models:
_and live imaging ta identify

C

(subtle) changes in refractive

‘index and/or pseudopod
~ extensions as the functional
_hallmark of highly-metastatic
| melanoma ;




What about melanoma cell lines?
Definitely different than PDXs...

Classifier blind to the cell system

!

Classification
0_.5

Classification

0

Cell lines PDXs Cell lines PDXs



A375 has the highest and MV3 the
lowest predicted metastatic efficiency
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A375 Is more aggressive than MV3

Cell| BLI BLI | Remote
line |Lungs| other | macro
organs| mets

A375| (4/5) | 4/5) | (5/5)

MV3| (5/5) | (215) | (1/5)

—

Uncoupled from tumor growth

2

1

Tumor diameter (cm)
0

0 10 20 30
Time (days)



PDX-trained classifier can predict
metastatic potential of melanoma cell
lines In mouse xenografts

Capturing a generic predictive property
for the metastatic potential of
melanoma



Summary
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Next week 20.5

» Kota Miura, NEUBIAS, on bioimage
analysis (English), 17:10!
» Students lectures:

* Oron Barazani - DL In microscopy
* Deep learning enables cross-modality super-resolution
In fluorescence microscopy. Hongda Wang, Yair
Rivenson,..., Aydogan Ozcan (2019)

« Shani Kleiman - medical imaging
 Prediction of cardiovascular risk factors from retinal
fundus photographs via deep learning. Poplin,
Varadarajan,..., Peng, Webster (2018)



