Data science in cell imaging
Lecture 5: deep learning in microscopy
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“The Great Wave off Kanagawa”, by Hokusai, ~1830 (Sourcé: Wikipedia)
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https://drive.google.com/file/d/1gpkRz4z2vjaf-Hm2dLhA_iic9tLf3_DQ/view?usp=sharing

Today and next week

* (Discussing potential course projects)

* Enhancing cell image quality with deep
learning

» Generative models for cell structure with
deep learning

» Classifying cell state with deep learning



Machine learning 101

Recommended deck for non-
computational students

Jason Mayes

Senior Creative Engineer, Google

Machine Learning

101

Feel free to share this deck with others who are
learning! Send me feedback here.



https://docs.google.com/presentation/d/1kSuQyW5DTnkVaZEjGYCkfOxvzCqGEFzWBy4e9Uedd9k/mobilepresent?slide=id.g168a3288f7_0_58

Supervised machine learning
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Unsupervised machine learning

Source: https://bit.ly/2IINONT



https://bit.ly/2IJN0NT

Deep learning
A powerful integration of automated feature
extraction and model training
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Adapted from https://bit.ly/2GMZou6



https://bit.ly/2GMZou6

How does it works?



Artificial neuron (perceptron)

A neuron simply has a bunch of weighted inputs (take the input number and multiply by
the weight) that are summed together. A bias is then added to this total. The weights
and bias are determined when we train the system. If final result is greater than a
threshold, it activates, providing an output. Strength of output depends on the activation
function chosen. The output is then fed into other neurons and the process repeats.
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Machine Learning 101 by Jsaon Mayes, http://tiny.cc/ly9cnz



http://tiny.cc/ly9cnz

Deep neural network

This is a multi layered perceptron (or deep neural network) - one of the oldest forms
of “neural nets” - conceptually goes back to the 60s! Each layer is fully connected to

the next and data flows forwards only:

_- Fully connected layers
. (each neuron in next layer is
784 Inputs e connected to every neuron in the % 10 Neurons
-7 previous - 5573 connections) g

7 Neurons . 5 Neurons

Output
classification is
the most
strongly
activated
output neuron

35 Connections

Input Layer 2 Hidden Layers Output Layer
(image pixel values) {10 possible classifications 0
- 9 digits)

Machine Learning 101 by Jsaon Mayes, http://tiny.cc/ly9cnz


http://tiny.cc/ly9cnz

Deep neural network

A Deep Neural Network
(DNN) simply consists of
many “hidden layers”
between the input and
the output. Each layer
can learn from the one

before it from which

higher level learning can

take place. These hidden layers typically are of lower dimensionality so they can
generalise better and not overfit to the input data. These middle layers in the
system can learn features of features. For example bunches of “edges” can lead
to “face parts” which lead to “faces” that the system can then recognize.

Machine Learning 101 by Jsaon Mayes, http://tiny.cc/ly9cnz



http://tiny.cc/ly9cnz

Autoencoder: unsupervised data
encoding
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Many applications for ML in cell
biology!

Today I'll review a few specific examples on deep
learning for (1) image restoration; (2) prediction of
(un-labeled) protein localization patterns



Imaging tradeoffs

Spatial/temporal resolution, experiment time, imaging depth,
fluorophore density, bleaching, and photo-toxicity

Sample health
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Hadar Aharoni (IDF) from Scherf et al. (2015)



Content aware image restoration (CARE)

Light exposure

Spatial resolutnon T~V Imaging speed

« Traditional methods use general assumptions to
perform the restoration

« CARE leverages the available knowledge about
the specific experimental task / setup

Weigert et al. (2018)



Content aware image restoration (CARE)

Training data generation Training Application

« Traditional methods use general assumptions to
perform the restoration

« CARE leverages the available knowledge about
the specific experimental task / setup

Weigert et al. (2018)



The machinery: U-Net
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Results
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Weigert et al. (2018)



Restoration of low-SNR images

exposure time
laser power

1 i
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Weigert et al. (2018)



Restoration of low-SNR imaages

Weigert et al. (2018)



omparison: different denoising methods
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CARE improves downstream analysis

Cell segmentation and tracking of a projected time-lapse

Raw+Premosa Network Groundtruth
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Weigert et al. (2018)



Image restoration of unseen axial
slices with semi-synthetic training data

Training data generation

Lateral Axial
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Welgert et al. (2018)



CARE Increase axial resolution of
acquired volumes

Weigert et al. (2018)



CARE Increase axial resolution of
acquired volumes

DRAQ5 GFP+LAP2b Merge
v ] _

Weigert et al. (2018)



CARE Increase axial resolution of
acquired volumes
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Anisotropic-to-isotropic restoration
leads to improved segmentation
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Anisotropic-to-isotropic restoration
leads to improved segmentation

Fraction of unmatched nuclei
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Synthetically generated training data

PSF, camera noise, and background auto-fluorescence
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Weigert et al. (2018)




Image restoration with synthetic
training data

Restoring sub-diffraction structures using only widefield images

Weigert et al. (2018)



Improved performance of the CARE
network over
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Weigert et al. (2018)



CARE vs. super-resolution radial

fluctuations (SRRF)
Enabling 20-fold faster imaging

Weigert et al. (2018)



Cross-application of trained care

3D Denoising Network

Network Input

Ground Truth

Trained on Planaria

Applied to:

| Planaria | | Tribolium | | Flywing |

networks

3D Denoising Network

Network Input

Ground Truth

Trained on

Applied to:

| Planaria | | Tribolium | | Flywing |

3D Surface Projection Network

Trained on Flywing

Applied to:

| Planaria | | Tribolium | | Flywing |

Network Input

Ground Truth

Weigert et al. (2018)



Minimal ‘hallucination’ effects

Reconstruction Errors Normalization Errors

Planaria denoising (lowest SNR)
Input Ground Truth Network

Ground Truth

Input (Premosa)

Flywing projection (lowest SNR)

_Input Ground Truth Network Network

wrong normalization

Pixelsize / Input scaling error
Input SRRF Network Network Network Network Network

scale =0.25 scale = 0.5 cale scale=1.5 scale=2




Reliability of image restoration

Calculating pixel-wise confidence intervals

Predicting pixel-wise distributions
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Weigert et al. (2018)



Visualizing the uncertainty by random
sampling pixel intensities from their
respective distributions

Weigert et al. (2018)



Assessing reliability via consistency
of several trained models

Network ensemble

Network 1 Network 2 Network N
Ensemble distribution Ensemble disagreement D

} \ D=0 All distributions equal
D=1 All distributions maximally different

Weigert et al. (2018)



Assessing reliability via consistency
of several trained models

Input Network ensemble Ensemble Ensemble
(MIP) Network 1 Network 2 Network 3 Network 4 mean disagreement
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Weigert et al. (2018)
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Weigert et al. (2018)




Go to View on
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Usabillity Is important!

Fluorescence microscopy is a key driver of discoveries in the life-sciences, with observable
phenomena being limited by the optics of the microscope, the chemistry of the fluorophores, and
the maximum photon exposure tolerated by the sample. These limits necessitate trade-offs
between imaging speed, spatial resolution, light exposure, and imaging depth. In this work we
show how deep learning enables biological observations beyond the physical limitations of
microscopes. On seven concrete examples we illustrate how microscopy images can be restored

even if 60-fold fewer photons are used during acquisition, how isotropic resolution can be
achieved even with a 10-fold under-sampling along the axial direction, and how diffraction-limited
structures can be resolved at 20-times higher frame-rates compared to state-of-the-art methods.
All described restoration networks are freely available as open source software in Fiji and KNIME.

How to start
» To use CSBDeep in Python, follow this guide.

» To use CSBDeep in Fiji, follow this guide.
» To use CSBDeep in KNIME, follow this guide. u '

« (If you have been given access, try CSBDeep on our Paperspace server.)

https://csbdeep.bicimagecomputing.com/
https://github.com/csbdeep/csbdeep



https://csbdeep.bioimagecomputing.com/
https://github.com/csbdeep/csbdeep

(Sometimes) even works out of the box!

i Guillaume Jacquemet v
W @guijacquemet

#CARE vs #SRRF on my microtubule images (TIRF 100x).
#CARE work beautifully. | look forward to train it to
work on filopodia ! | already have images ready !
biorxiv.org/content/early/...

RAW SRRF CARE

12:09 PM - Jan 4, 2018 - Twitter Web Client

Guillaume Jacquemet, https://twitter.com/quijacquemet/status/948859038795780101



https://twitter.com/guijacquemet/status/948859038795780101

Summary

 CARE leverages experiment-specific
iInformation to imaging tradeoffs

* Matched images, semi-synthetic and synthetic
training data

* High quality denoising models can be trained
without the availability of clean ground
truth data

» Great for downstream analysis not for
Intensity-based measurements!

* Could work well “out of the box”

» Usable by others!



“Super resolution” in the context of
computer vision

* Recover a high resolution image from one or more low
resolution input images

 Classical multi-image super resolution: combining images
obtained at subpixel misalignments (rani & Peleg, 1991)

« Example-Based super-resolution: learning
correspondence between matching low and high
resolution image patches (Freeman, Pasztor & Carmichael, 2000)

L Ay

L= e

LN

(a) Classical Multi-Image SR (b) Single-Image Multi-Patch SR

Glasner, Bagon and Irani (2009)



Input image / Various scales of /

(computer vision) super
resolution from a single
Image

Glasner, Bagon and Irani (2009), see
http://www.wisdom.weizmann.ac.il/~vision/SinglelmageSR.html|



http://www.wisdom.weizmann.ac.il/~vision/SingleImageSR.html

(One) result

(a) Input image (scaled for display). (b) Bicubic interpolation (x2). (c) Within image repetitions (x2).  (d) Unified single-image SR (x2).

Glasner, Bagon and Irani (2009), see hitp://www.wisdom.weizmann.ac.il/~vision/SinglelmageSR.html


http://www.wisdom.weizmann.ac.il/~vision/SingleImageSR.html

2009 vs. 2018

A conceptual lag of (almost) a decade
between computer vision and
microscopy!

There might be other opportunities out
there..



Handling noisy images: new
extensions from the Jug lab

(could be picked as a student presentation)

NoiseZnoise: a mapping between pairs of
iIndependently degraded versions of the same
training image, requires availability of pairs of noisy
Images (Lehtinen et. al., 2018)

Noise2Void: self-supervised training method with
"blind-spot" networks — excluding a pixel and
learning a mapping from the noisy image to the
missing pixel (Krull, Buchholz and Jug, 2019)
Probabilistic Noise2Void: predict per-pixel intensity
distributions (Krull, Vi'car and Jug, 2019)




Examples of mapping matched
Image pairs for image enhancement

» Super resolution: ANNA-PALM, deep STORM,
“cross modality” (resolution), PSSR
» 2D - 3D refocusing, Deep-Z

Could be picked as a student presentation



ANNA-PALM: DL accelerates super-
resolution localization microscopy

 ANNA-PALM (slightly) preceded CARE

 exploits the structural redundancy of most biological
Images to reconstruct high-quality images from
under-sampled localization microscopy data

* Reducing total number of frames and independent
localizations without trading off spatial resolution

Ouyang et al. (2018)



Photoactivated localization
microscopy (PALM)

diffraction-limited
Image sequences

Widefield Localization

Betzig (2006)



ANNA-PALM network training
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Ouyang et al. (2018)



ANNA-PALM inference

Error map

ANNA-PALM(K)

O,Mito,__"
PALM(k) & ‘AN —

Ouyang et al. (2018)



Validation of ANNA-PALM on
simulated images

Widefield PALM (sparse) ANNA-PALM (input = a)

Ouyang et al. (2018)



Reconstruction quality

(MS-SSIM)

Validation of ANNA-PALM on
simulated images
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Ouyang et al. (2018)



ANNA-PALM imaging of microtubules

Widefield PALM (k = 300) PALM (K = 30,000)

ANNA-PALM (input= a) ANNA-PALM (input= b) ANNA-PALM (inputs= a+b)

el ! 18

Ouyang et al. (2018)



ANNA-PALM imaging of microtubules

sparse
PALM

Ouyang et al. (2018)



High-throughput super-resolution
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Robustness to perturbations

PALM (k = 500) ANNA-PALM (k = 500) PALM (K = 60,000)

PALM (k = 800) - ANNA-PALM (k = 800) PALM (K = 60,000

A\ N
— -'\.

Taxol (1uM, 20 min)

Ouyang et al. (2018)



Training with microtubules and
(one) nuclear pores (imaged here)

PALM (k = 3,000) ANNA-PALM (k = 3,000) PALM (K = 30,000)

Ouyang et al. (2018)



Deep STORM

(the Israeli connection!)

Research Article Vol. 5, No. 4 / April 2018 / Optica 458

Deep-STORM: super-resolution single-molecule
microscopy by deep learning

Euas Neume,'? Lucien E. Weiss,”? ToMer MICHAELI,' AND YOAV SHECHTMAN®*

'Electrical Engineering Department, Technion, 32000 Haifa, Israel
“Biomedical Engineering Department, Technion, 32000 Haifa, Israel
*Corresponding author: yoavsh@bm.technion.ac.il

Received 13 February 2018; accepted 13 March 2018 (Doc. ID 323156); published 12 April 2018



Pick a paper/s and schedule yourself
for class presentation

Preferably from the list | distributed

Include key + new (ones that | did not read yet) papers
One (or more — from a common “topic”) paper

Pair > single

These paper are LONG! (compared to CS papers)

Focus on the important stuff, in the context of our
course: idea & methodology

Reading tip: you can (mostly) ignore many
biological/experimental details.

« Example: specific molecule names. Very important,
but less in the context of our course.



Course projects



