Data science in cell imaging
Lecture 4: phenotypic screening
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Today

* High content cell profiling (slides
adapted from Anne Carpenter)
» A few concrete examples



Discovering drugs In high throughput
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Anne Carpenter, Image: Nalgene; video: Chemistry World



Large scale imaging experiments

Cells or organisms in multiwell plates, each well treated with a gene or chemical perturbant

Cell
measurements

automated
microscopy
(any manufacturer)

-
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(size, shape, "
intensity, texture, -’

etc.) .’

Data exploration
& machine learning

Anne Carpenter



Three waves of quantitative

iImage analysis

Measure known
phenotypes

Train for known
phenotypes
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Quality control (QC)
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QC.: are there systematic artifacts?
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Anne Carpenter, AcuityXpress images, courtesy of Ralph Garippa



QC: Handling non-homogenous
Illumination across the image field

DAPI _ Actin Tubulin

Channels

Anne Carpenter, from Singh et al. (2014)



QC: Handling non-homogenous

Illumination across the image field

Uncorrected

Corrected
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Anne Carpenter, from Singh et al. (2014)
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QC: Is the phenotype confounded by
other factors?

e.g., cell density, cell cycle, cell microenvironment, ...

Plate 1
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Caicedo et al. (2017)



QC: are the hits real?
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Anne Carpenter, from CellProfiler Analyst (www.cellprofiler.org)



Negative and positive controls

4 . [O00000 V00
@00 O OO0
4 1 000000V
4 1 0000000V

4 1 000000V
4 1 [O0000eVVV
4 1 [O0000e V0V
Q@00 O OO OOOVOOOO




Batch effects

“non-biological factors in an experiment cause changes
In the data produced by the experiment” (Wikipedia)

Plate 1 Plate 2 Plate 3 Plate 4

Plate 1 Plate2 Plate 3 Plate 4

Caicedo et al. (2017)



Off target effects
Demonstrated via shRNA screening

L ~1400 features

L LB I SRR ER Normalize features
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% e : $ | Surnmarize per wel
ShRNA knockdown of ~3000 wells ~27,000 images ~1400 features Transform data

U20S celis: 315 shRNAs containing extracted from each cell
across 41 genes ~2.900,000 cells

Test: 315 shRNAs against 41 genes in U20S (human) cells

Anne Carpenter, from Singh et al. (2015)



ShRNA profiles of screen hits are
reproducible!
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Off target effects dominate shRNA
profiles!
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Anne Carpenter, from Singh et al. (2015)



Back to high content single cell
phenotypic profiling — the full pipeline

Cell profiling: "describing a population of cells as a rich
collection of measurements"
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Image analysis
Image > single cell features

* lllumination correction
« Segmentation

« Tracking (for screens that include dynamlcs)
Image 2k
analysis

Counts, Sizes, Shapes, Intensities, Textures, Correlations, Neighborhoods

Anne Carpenter



(Automated) image quality control

Field of view: debris, saturation, focus
Cell level quality control (outlier detection)

Feature extraction Analysis
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Preprocessing extracted features

Dealing with missing values
Plate-layout-effect correction

Batch-effect correction
Feature transformation and normalization
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Dimensionality reduction

Different ways of feature selection / dimensionality
reduction

Feature extraction Analysis
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Single-cell data aggregation

Comparing populations (profiling)
Cell heterogeneity (different sub-populations of

cells)

Construct profiles at the level of images, fields of
view, wells, or replicates

Single cells
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Measuring profile similarity
Assay guality assessment
Downstream analysis

Feature extraction Analysis
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Interpreting high-dimensional phenotypes

Look at images for each cluster
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Interpreting high-dimensional phenotypes
Look at annotations for each cluster

Anne Carpenter



Interpreting high-dimensional phenotypes
Look at features that distinguish clusters

0 1 2 3 4 5 6
Cells_Texture_Gabor_Alexa568_10 98.684577 | 129.198993 | 130.007223 ( 129.681593 | 129.317059 | 130.185317 | 127.858318
Cells_Texture_AngularSecondMoment_CellMask_3_0 0.134944 |0.045163 |0.040670 |0.042798 |[0.042718 |(0.047332 |0.045217
Cells_Texture_AngularSecondMoment_CellMask_5_0 0.094794 (0.043140 [0.039624 |0.041798 |0.041102 |0.045364 |(0.042749
Nuclei_Texture_AngularSecondMoment_CellMask_3_0 0.142980 |0.049463 |0.047698 (0.051781 |0.046577 |0.052370 |0.047757
Nuclei_Texture_Gabor_Alexa568_10 98.988721 | 132.283091 | 135.577399 | 135.651436 | 133.083455 | 134.337589 | 130.468138
Cells_RadialDistribution_FracAtD_Hoechst_30f4 0.363300 |0.404550 [0.408073 |(0.403985 |0.407065 |0.408418 |0.405231
Cytoplasm_Texture_InfoMeas2_CellMask_10_0 0.201429 |0.840334 |0.864921 |0.865561 [0.844166 |(0.766654 |0.824663
Cytoplasm_Texture_InfoMeas2_CellMask_5_0 0.629889 |0.862343 |0.878067 |0.880622 |0.865987 |(0.852146 |0.849805
Cells_Texture_Entropy_CellMask_3_0 2.956207 |3.447352 |3.511392 |3.463545 ([3.488114 (3.462852 |3.460178
Cells_Texture_InverseDifferenceMoment_Hoechst 3 0 0.497116 |0.403176 |0.398306 |0.403155 [0.399352 |(0.395730 |0.402702
Cells_Neighbors_NumberOfNeighbors_5 0.995991 |0.029025 |0.018101 |0.006735 |[0.018800 |(0.027008 |0.022804
Cytoplasm_AreaShape_Zemike_8_6 0.008789 |0.012746 |0.013128 |0.013186 [0.012873 |(0.012836 |0.012480
Cells_Neighbors_PercentTouching_5 18.693193(0.194687 |0.1859%0 |-0.001881 |0.164185 |0.363572 |(0.129380
Nuclei_Neighbors_NumberOfNeighbors_1 0.779256 |0.001808 |-0.000646 |0.001276 |[-0.000116 |(0.002775 |-0.000143
Nuclei_Intensity MassDisplacement_Alexa568 1.059710 [0.376466 |0.334523 |0.303492 |0.377752 |0.310736 |(0.408470
Cells_Neighbors_NumberOfNeighbors_Adjacent 0.840963 |0.003611 |0.000905 |-0.002544 (-0.000132 |0.007366 |-0.000331
Nuclei_Texture_InverseDifferenceMoment_Hoechst 3 0 |0.480997 |0.393181 |0.383865 |0.385076 |0.389208 |0.378258 |0.395047
Cells_Neighbors_PercentTouching_Adjacent 4.788959 (-0.011521 [0.004760 |0.013783 |0.010317 |-0.042623 (-0.006325
Nuclei_Neighbors_PercentTouching_1 4.124720 (-0.0173%0 (-0.001461 |0.019684 |0.009621 |-0.054541 [-0.004060
Cells_Correlation_Correlation_Hoechst_CellMask 0.445154 |0.893111 |0.894903 (0.878988 |0.900852 |0.861685 |0.901846
Cells_Intensity_MassDisplacement_Alexa568 0.998623 |0.408807 |0.409201 (0.396260 |0.404762 |0.370103 |0.416380
Cells_Texture_DifferenceEntropy_Hoechst 3 0 1.412808 (1.662219 |1.665551 |1.649187 |1.670052 |1.688439 [1.665959
Nuclei_Texture_AngularSecondMoment_CellMask_5_0 0.102415 |0.047374 |0.046753 |0.051539 [0.044798 |(0.050841 |0.045112
Cells_Texture_Correlation_Alexa568_10_0 -0.239855 (-0.376286 |(-0.381486 |-0.366189 |-0.387679 |[-0.384570 [-0.384801
Cells_AreaShape_Zemnike_3_1 0.020641 (0.017346 [0.016840 |0.017188 |0.016925 |0.016582 |(0.017262
Nuclei_AreaShape_Zemike_3_1 0.021177 |0.017543 |0.017246 |0.017813 |[0.017104 (0.017072 |0.017355
Nuclei_AreaShape_Zemike_1_1 0.052819 |0.045796 |0.045063 |0.045380 [0.045640 |(0.044408 |0.045968
Cytoplasm_Correlation_Correlation_Hoechst_CellMask |0.199921 |0.634145 |0.677927 |[0.673406 |0.642531 |[0.572587 |0.623264 An n e C ar p e n t e r



Interpreting high-dimensional phenotypes

“Examining images or rank-ordered lists of
features that distinguish individual profiles or
clusters is tedious and lacks sensitivity for all
but the most obvious of phenotypes, confirming
that quantitative morphological profiling is more
sensitive than the human visual system.”

We'll elaborate on alternatives later today and during the course

Rohban et al. (2017)



Determine chemical
mechanism of action/ Identify signatures of
target identification disease
& lead-hopping

Enrich Appllca.tloons Identify small
chemical of pr0f|||ng molecule mimics
libraries of genetic

for diverse perturbations
bioactivity

Characterize genes,
phenotype alleles

Anne Carpenter



What Are Rare Diseases?

A disease is rare when it affects fewer than
200,000 Americans at any given time or fewer
than 1:2,000 people in Europe

1:10 people
- suffer from a rare
disease (U.S.)

Affect over
300 million
people

will not live
to see their
5th birthday

affected
20% approximateI%SO of
are afflicted by the rest of the the roughly 7,000 rare

documented rare diseases iseases

Anne Carpenter, Rare Genomics Institute



Image-based profiling can identify
drugs for disease (g
4 jdrum

Disease

Drug chosen as hits based on automated analysis outperformed
those chosen by expert visual analysis

Today: 300+ disease models available for screening in parallel
Anne Carpenter, Gibson, et al. (2015)



Signatures of genes, compounds
and diseases

Cell Painting
assay
(6 dyes)
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Anne Carpenter, Bray et al. (2016)



ldentify small molecules
mimicking genetic perturbations

. Profi’le a |dentify similar-performing
query” gene  compounds, based on
profile similarity

BRAF
R
iImage
features

profiles for 30K
compounds
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Anne Carpenter



Determine mechanisms of action (MoA)

Profile a
‘query” compound .
L 1, LK~ N I
vy 1 {1,
[ ;:ﬂ' e »l T II \\... // \\5_’/
Image e e
features e Goal: group
3 St compounds Into
Y clusters with
R |
known compounds
Compare to
profiles for well-
characterized
compounds

Anne Carpenter, Gustafsdottir et al. (2013), Ljosa et al. (2013)



Lead hopping (the “opposite” of MOA)

Identify similar-

querys " compounds, based
compound[h’ e ON profile similarity

: —) [T

image .
features
) S \\\

profiles for 30,000

compounds

Goal: novel
chemical
structures with
desired
phenotypic
activity

Anne Carpenter



Profiling to enrich libraries

20,247 compounds profiled:

Gene expression
(1000 mRNAs measured)

27% of compounds
3394 vield a detectable

2060 gene expression phenotype

55% of compounds
9044 yield a detectable
morphology phenotype

Cell Painting

6 stains, 1000 features
Anne Carpenter, Wawer et al. (2014)



Challenges (and opportunities) Iin
phenotypic screening

Dealing with cell heterogeneity
Defining better similarity measures between
populations

Interpretability
3D + microenvironment + time




Example: PhenoRipper,
segmentation-free cell profiling

Identify Identify Identify
foreground block superblock
blocks types types

block types superblock types
0O0@ - @l =
EEE =

- .
EEE &N B X

Rajaram et al. (2012)



PhenoRipper. segmentation-free
cell profiling

Prqfile Visualize profile
experiments similarity
Exp. 1 @
. i I

g ) 1-:-
) L

superblock
fraction Rajaram et al. (2012)




Example: cell painting

N
N\

Nucleoli/cyto

*
M\

Actin/Golgi/PM. % Mitochond " Combined

Cell Painting: 6 stains imaged in 5
channels reveal 8 cellular components

Extract signatures from
each cell’s image, then
match these “profiles” to
link drugs to genes to
disease states

Example: match a drug to a
CRISPR knockout to confirm
a drug’s target

Example: identify a signature
In diseased patient cell lines
and screen drugs to revert it

Anne Carpenter, Bray et al. (2016)



(Many) pathways can be interrogated
by morphological profiling

C-EBP alpha (1)-

Hippo (3)-

Hedgehog (2)-
Cytoskeletal Re—org (10)-
MAPK (19)-
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Rohban et al. (2017)



Morphological similarity captures
known gene-gene relationships
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Rohban et al. (2017)



Interpretation: sub-population
clustering and visualization of each
control-perturbed pair

Rohban et al. (2017)



Cell painting — available datasets

Bray et al. (2017), A dataset of images and
morphological profiles of 30 000 small-molecule

treatments using the Cell Painting assay. Data:

https://qgithub.com/gigascience/paper-bray2017

Rohban et al. (2017) Systematic morphological
orofiling of human gene and allele function via Cell
Dainting. Data: hitp://idr.openmicroscopy.org/webclient/2show=screen-1751

Gustafsdottir et al. (2013). Multiplex cytological
profiling assay to measure diverse cellular states.

Data: http://idr.openmicroscopy.org/webclient/?show=screen-1952



https://github.com/gigascience/paper-bray2017
http://idr.openmicroscopy.org/webclient/?show=screen-1751
http://idr.openmicroscopy.org/webclient/?show=screen-1952

Cell painting: including dispersion and
covariances to population averages

Neg. Control Treatment
» & |
/ / V 4
b - - LY
' . s =
LY @ ‘
t Elongation + Elongation
... g F
= Area - Area
Mean Area =0 Mean Elongation =0
Std. Dev. Area =+  Std. Dev. Elongation = &

0 Control

Cov(Area, Elongation) = [1 Treatment

Rohban et al. (2019)



Fused profile similarities improves
performance - validation

"Do pairs of cell populations that look most alike,
according to the computed image-based profiles, have
been treated with perturbations that are annotated

as having the same mechanism of action (for compounds)
or the same pathway (for gene overexpressions)?"

Rohban et al. (2019)



Folds of enrichment

Fused profile similarities improves

performance - validation

Number of folds of enrichment for top connections

(in percentage) to have the same MOA/pathway vs. rest of the connections

CDRPBIO-EBBCO36-Bray TA-ORF-BEBEBCO037-Rohban Bioactives-BBBCUZ22-Gustafsdottir

0.4

0.8

12 g
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1.2 186 2.0 04 08 12 16 20 04 08 12 16 20

Percentage

Median+MAD+cov. (SNF)
Median+MAD (SNF)

+ Median+median (SNF)

+ Median+MAD (concatenated)

Medi
i Rohban et al. (2019)



Example: single-cell morphology and
metastatic potential

%5@ Parental cells

Serial dilution
Seeding/checking

HELOEU
a1l
o & W

Single cell clones (SCCs)
Wau et al. (2020)



SCC samples

1. Imaging
>2000 images
2- . m "o
Segmentation / >30,000 cells

==JNucleus
215 features

3. Cell morpho-feature _
extraction

N-C positioning

4. Feature reduction =—

5. Clustering analysis = Apc3
w5
PC2 pc1
Cell morphology
classification /_\
@Z% eﬁ é‘f; s ; P*"”x? p®o@

Sﬁ&?@!eﬁf& ‘\\“Qﬁm

Representatives cell morphs
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Quantitative representation of cell
populations
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Shape-clustering
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Morphological phenotypes in vitro and
differential tumor progression in vivo

Human DNA content in the lungs
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Morphology correlates with gene
expression patterns

Gene expression landscape
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Morphology correlates with gene
expression patterns

CeII In vivo
Transcriptome morpho-type function
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Example: high-throughput screens
using live-cell biosensor

”MCF*IDAS 0 nogimL EGF W*IEIAs: 0.2 ng/mL EGF MCF 104s: 100 ngémL EGE
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High-throughput screening for altered
extracellular-regulated kinase (Erk) dynamics

endogenous drug altered dynamics
signaling dynamics perturbations
- A inhibition
Ry * Pracacs
Erk Ras/Erk * | activation
Lu -> % module m”
® - NSNS\ mimic disease
\/
Y

MAAMA new signaling regimes

Goglia et al. (2020)



Imaging processing pipeline

KTR-H2B keratinocytes single-cell Erk activity over time
—~ 0.8 —
E - -
x v v
1. segment nuclei "g 04 v H vl Jﬂ v‘ir l l
. = 0.4 — i N\ n
using TrackMate 3 l T me‘\\n I\.‘MN
2. measure nuclear E \‘L/
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to extract dynamic info. time (h)

Goglia et al. (2020)



Screening

(1) Screen for changes to single-cell Erk dynamics

treat keratinocytes  image every

429 compound
3 minfor 5 h

inhibitor ibrary ~ in 384 well plate

(2) Extract cell tracks and dynamic features

time on (f frequenc
_ e _{ an) quency (7)
= - B + density
i ® prominence (p) ]EEEZHE] + displacement
time time
obtain single-cell quantify features
Erk activity traces for each cell _
Goglia et al. (2020)



Screen results
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Interpretation of “hits”
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Conclusions (after follow-ups)

drug
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dynamics in primary
mouse keratinocytes

Erk A A A

time

—

altered dynamics

Y ¢ & N\

imhibition

activation

mimic disegse

new signaling regimes

Altered Erk dynamics regulate
cell proliferation

Kinase inhibitors
alter Erk dynamics

Pulse
frequency
normnal
dynamics
Class 1
'l,"____'_,_.-

baseline Erk activity

Faradox B-Raf
on-EGER activators
T bbb de e |'
r AU |r‘\‘.‘.-
. A % S-phase; R o \
Y 4 A ahhp &=
e growth 40717 =
N media e
¥
_ A
20wt :‘ﬁ EGFR / MEK |
Class 2 o Erk inhibitors
ﬂ'l._,lr"""ﬁ'\ _
0 T I |
] 10 20 30

% S-phase; starvation media

Goglia et al. (2020)



Additional open (screening)
datasets for your research projects

Image data resource (IDR), Williams et al. (2017), Image
Data Resource: a bioimage data integration and publication
platform https://idr.openmicroscopy.orqg/

Pascual-Vargas et al. (2017), RNAI screens for Rho GTPase
regulators of cell shape and YAP/TAZ localisation in triple
negative breast cancer Data via IDR

Pizzagalli et al (2018), Leukocyte Tracking Database, a
collection of immune cell tracks from intravital 2-photon
microscopy videos (via figshare)

Brenda Andrews lab resources: https://thecellvision.org/ ,
http://sites.utoronto.ca/andrewslab/data.shtml

The Human Protein Atlas, https://www.proteinatlas.org/
The Allen Institute of Cell Science
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