

Next Generation Phenotyping using DeepGestalt in Clinic, Research and Variant Analysis

Yaron Gurovich

350 MILLION PEOPLE WORLDWIDE SUFFER FROM RARE DISEASES (Global Genes, https://globalgenes.org/rare-diseases-facts-statistics/)

280M

PERCENT OF RARE DISEASES ARE GENETIC

(Bavisetty S, et al. Emergence of pediatric rare diseases. Rare Diseases 2013, volume 1. Available at: http://www.tandfonline.com/doi/full/10.4161/rdis.23579)

5600+

700 + RARE DISEASES HAVE BEEN DEFINED

(Global Genes. Rare diseases: facts and statistics, 2014. Available at: http://globalgenes.org/rare-diseases-facts-statistics)

Phenotype

Phenotype

The set of **observable characteristics** of an individual resulting from the interaction of its **genotype** with the environment.

FACE2GENE

FACE2GENE | Accessible Phenotyping through Cloud

Face2Gene makes our Next-generation Phenotyping technologies accessible through the cloud on mobile devices and web browsers, allowing better and faster clinical evaluation of patients in real-time.

Face2Gene on a Global Scale

Face2Gene's user base is the largest network in the space of clinical genetics, facilitating data sharing

70%+ Clinical Geneticists Worldwide

• 2,000+ Clinical and research sites

130+ Countries

Face2Gene CLINIC

DeepGestalt

Using deep learning convolutional neural networks to analyze facial photos.

Gurovich et al. (Jan 2019) Identifying rare genetic syndromes using deep learning.

Database Challenges

- Small dataset
- Large variation in number of
 - patients per disorder
- Ethnic diversity within disorders
- Need to support thousand of

disorders

Types of Face Recognition

Intra-Person

Intra-Syndrome

Initial Training

Transfer Learning

DeepGestalt - Results

Binary Cornelia de Lange Syndrome

Method	Accuracy % (95% CI)	P-Value
Rohatgi et al. (34)	75 (NA)	NA
Basel-Vanagaite et al. (5)	87 (NA)	0.22
DeepGestalt	96.88 (90.1-100.1)	0.01

Binary Angelman Syndrome

Method	Accuracy % (95% CI)	Sensitivity % (95% CI)	Specificity % (95% CI)	"
Bird et al. (35)	71 (NA)	60 (NA)	78 (NA)	
DeepGestalt	92 (80-100)	80 (50-100)	100 (100-100)	

Multi-Class Gestalt Model

Facial Area	Clinical-Test (Top-10 Accuracy %)	Publications-Test (Top-10 Accuracy %)	
Face Upper Half	82.0	82.4	
Middle Face (Ear to Ear)	81.0	80.2	
Face Lower Half	76.8	77.2	
Full Face	88.2	87.5	
Aggregated Model	90.6	89.4	

Specialized Gestalt Model

Top-1-accuracy of 64%, Random 20%

<u>Source</u>: Gurovich, Y. et al. DeepGestalt - Identifying Rare Genetic Syndromes Using Deep Learning. Nature Medicine.

Research Application

See reviews... See all...

Research Application - Ethnic Diversity

Vorravanpreecha N, Lertboonnum T, Rodjanadit R, Sriplienchan P, Rojnueangnit K, (2018) <u>Studying Down syndrome</u> <u>recognition probabilities in Thai children with de-identified computer-aided facial analysis American Journal of <u>Medical Genetics</u> Am J Med Genet Part A. 2018;1–6. https://doi.org/10.1002/ajmg.a.40483
</u>

"We present a scientific basis for this novel tool, useful in the clinic where patients are of a different ethnicity unfamiliar to the evaluator."

Research Application - Ethnic & Age Diversity

Pantel JT., Zhao M., Mensah MA., Hajjir N., Hsieh TH., Hanani Y., Fleischer N., Kamphans T., Mundlos S., Gurovich Y, Krawitz PM. <u>Advances in computer-assisted syndrome recognition by the example of inborn errors of metabolism</u> J Inherit Metab Dis (2018). ttps://doi.org/10.1007/s10545-018-0174-3

"Our results show that DeepGestalt, the next-generation-phenotyping technology within Face2Gene, is not confounded by sex or ethnic background for the studied phenotypes."

n=40	MPS I	MPSII	ML	SLOS	NCBRS
MPS I	0.39	0.35	0.17	0.07	0.02
MPS II	0.17	0.59	0.19	0.03	0.02
ML	0.16	0.2	0.49	0.15	0.0
SLOS	0.04	0.04	0.13	0.75	0.03
NCBRS	0.06	0.05	0.02	0.05	0.82

Fig. 1 Overview of the original sample set with sex ratios (male/female/sex not mentioned) and ethnic backgrounds of European (left) vs. Non-European

Research Application - Genotype-Phenotype correlation

• Martinez-Monseny A, Cuadras D, Bolasell M, et al. (2018) <u>From gestalt to gene: early predictive</u> <u>dysmorphic features of PMM2-CDG</u> J Med Genet doi:10.1136/jmedgenet-2018-105588

- PMM2, Angelman and control cohorts.
- PMM2 age groups cohorts.
- "At present, Face2Gene is useful to suggest PMM2-CDG."

